SAMPLE TRIP REPORT

SITE NAME:

Cornell Dubilier Electronics Site

PROJECT No.:

8003-306

CERCUS ID No.:

NJD981557879

SAMPLING DATE:

June 8, 1994

EPA CASE No.:

22276

1. Site Location:

Hamilton Boulevard, South Plainfield, New Jersey - Refer to Figure 1

2. Sample Locations:

Refer to Figure 2

3. Sample Descriptions:

Refer to Table 1

4. Laboratories Receiving Samples:

Sample Type

Name and Address of Laboratory

Full TCL Organics

Ross Analytical Services Inc. 16433 Foltz Industrial Parkway Strongville, Ohio 44136

TAL Inorganics (except CN)

IT Analytical Services - Export 5103 Old William Penn Highway

Export, PA 15632

5. Sample Dispatch Data:

A total of eight (8) aqueous samples and eleven (11) soil/sediment samples were shipped on June 8, 1994 by MPI personnel, via Federal Express, in four (4) coolers, under Airbill No. 1948604302 to Ross Analytical Services Inc. for Full TCL Organics analyses. A total of seven (7) aqueous samples and eleven (11) soil/sediment samples were shipped on June 8, 1994 by MPI personnel, via Federal Express, in two (2) coolers, under Airbill No. 1948604313 to IT Analytical Services - Export for TAL Inorganics (excluding CN) analyses.

6. Sampling Personnel:

Name	Organization	<u>Duties on Site</u>							
Gary Bielen David Kahlenberg Lilli Gonzalez Christopher Bath Colleen Dywer	Malcolm Pirnie, Inc. Malcolm Pirnie, Inc. Malcolm Pirnie, Inc. Malcolm Pirnie, Inc. Malcolm Pirnie, Inc.	Site Manager (SM) Site Health & Safety Officer (SHSO) Sample Management Officer (SMO) Sampler Sampler							

7. Weather Conditions:

06/08/94

Overcast; temperature, 65° F

8. Additional Comments:

All samples will be analyzed for Target Compound List (TCL) organic and Target Analyte List (TAL) inorganic compounds, excluding cyanide.

The trip blank (TB1) was present during the collection of all aqueous samples. TB1 is associated with all the surface water (SW) samples collected on June 8, 1994.

None of the samples showed a reading above background on the OVA or HNu.

The surface water/sediment sample (SW1/SED1) was moved from its original location to a new location further downstream due to access problems caused by excessive vegetative growth.

An additional surface water/sediment sample (SW5/SED5) location was added upon the discovery of a storm drain pipe that was discharging effluent into the stream. SW5/SED5 was collected at the probable point of entry of the discharge into the stream.

RIN1 was a rinsate sample collected from a scoopula and bowl. RIN2 was a rinsate sample collected from a trowel. These rinsates are associated with all of the sediment and soil samples collected on June 8, 1994.

9. Report Prepared By:

10. QA/QC Approved By:

Date: <u>June 21, 1994</u>

Date: June 21, 1994

TABLE 1 SAMPLE DESCRIPTIONS

CORNELL DUBILIER ELECTRONICS SITE SOUTH PLAINFIELD, MIDDLESEX COUNTY, NEW JERSEY

Sample Number	CLP Organic Sample Number	CLP Inorganic Sample Number	Collection Time	Sample Type	Sample Location
S1	BPD08	MBLF01	1027	Soli	Soil sample collected from pile located adjacent to Building No. 14. Sample was collected 106° southeast and 115' away from the aboveground tank. Sample depth 0-1 foot.
S2	BPD09	MBLF81	1125	Soil	Surface soil sample collected 10' east downslope of tank disposal area and 46' east of soil sample S4. Sample depth 0-1 foot.
S3	BPD10	MBLF82	1105	Soil	Surface soil sample collected 2' south of the tank disposal area. The sample location is 167' from the southeast corner of the fence (bearing unknown). Sample depth: 0-1 foot.
S4 ⁽¹⁾ .	BPD11	MBLF83	1050	Soil	Surface soil sample collected just north of the tank disposal area. The sample location is 102' from the gate on north side of fence (bearing unknown). Sample depth: 0-1 foot.
S5	BPD12	MBLF25	1200	Soil	Surface soil sample collected from within the fenced-in area on the back lot of the property, south of the buildings. The sample location was 168' from southwest corner of fence (bearing unknown). Sample depth: 0-1 foot.

⁽¹⁾ Sample location designated for the collection of MS/MSD or MS/MD sample.

⁽²⁾ Sample location designated for the collection of field duplicate sample.

⁽³⁾ N/A means not applicable.

TABLE 1 (Continued) SAMPLE DESCRIPTIONS CORNELL DUBILIER ELECTRONICS SITE SOUTH PLAINFIELD, MIDDLESEX COUNTY, NEW JERSEY

Sample Number	CLP Organic Sample Number	CLP Inorganic Sample Number	Collection Time	Sample Type	Sample Location
S6	BPD25	MBLF26	1220	Soil	Background soil sample collected 235° southwest and 86' from the southwest corner of the fence. Sample depth: 0-1 foot.
S7 ⁽²⁾	BPD26	MBLF27	1210	Soil	Duplicate soil sample collected at same location as sample \$5.
SW1 ⁽¹⁾	BPD27	MBLF28	1645	Aqueous	Background surface water sample collected from the unnamed tributary to Bound Brook 10' upstream of an 8' dlameter concrete culvert located upstream of the tank disposal area.
SW2	BPD28	MBLF29	1615	Aqueous	Surface water sample collected from the unnamed tributary to Bound Brook at tank disposal area's probable point of entry (PPE) into the unnamed tributary of Bound Brook. The sample was collected 300' upstream of the Lehigh Valley Railroad Bridge.
SW3	BPD29	MBLF30	1505	Aqueous	Surface water sample collected from the unnamed tributary to Bound Brook at point that encompasses 0.1 miles of wetland frontage from the tank disposal area PPE. This point was 30' upstream from the Lehigh Valley Railroad Bridge and 270' downstream of SW2/SED2.

⁽¹⁾ Sample location designated for the collection of MS/MSD or MS/MD sample.

⁽²⁾ Sample location designated for the collection of field duplicate sample.

⁽³⁾ N/A means not applicable.

TABLE 1 (Continued) SAMPLE DESCRIPTIONS CORNELL DUBILIER ELECTRONICS SITE SOUTH PLAINFIELD, MIDDLESEX COUNTY, NEW JERSEY

Sample Number	CLP Organic Sample Number	CLP Inorganic Sample Number	Collection Time	Sample Type	Sample Location
SW4 ^{r2}	BPD30	MBLF31	1510	Aqueous	Duplicate surface water sample collected at same location as sample SW3.
SW5	BPG00	MBLF37	1540	Aqueous	Surface water sample collected at the point where the stormwater pipe discharge enters the unnamed tributary of the Bound Brook. This location is 265' upstream of the Lehigh Valley Railroad Bridge.
SED1	BPD31	MBLF32	1645	Sediment	Sediment sample collected at same location as sample SW1.
SED2	BPD32	MBLF33	1615	Sediment	Sediment sample collected at same location as sample SW2.
SED3	BPD33	MBLF34	1515	Sediment	Sediment sample collected at same location as sample SW3.
SED5	BPG07	MBLF38	1540	Sediment	Sediment sample collected at same location as sample SW5.
RIN1	BPD34	MBLF35	0945	Aqueous	Rinsate sample collected from bowl and scoopula. See Statement 8.
RIN2	BPD83	MBLF36	1000	Aqueous	Rinsate sample collected from trowel. See Statement 8.
TB1	BPF99	N/A ⁽³⁾	0940	Aqueous	Trip blank. See Statement 8.

⁽¹⁾ Sample location designated for the collection of MS/MSD or MS/MD sample.

⁽²⁾ Sample location designated for the collection of field duplicate sample.

⁽³⁾ N/A means not applicable.

MAP KEY

SOIL SAMPLE

CUREAGE WATER/SEDIMENT SAMPLE

CORNELL DUBILIER ELECTRONICS
SOUTH PLAINFIELD, MIDDLESEX COUNTY, NEW JERSEY
SAMPLE LOCATION MAP
NOT TO SCALE

SITE NAME: CORNELL DUBILIER ELECTRONICS

PROJECT#: 8003-306 SAMPLING DATE: 6/8/94

EPA CASE NO.: 22276 LAB: ROSS

PESTICIDES Sample ID No. Traffic Report No. Matrix Units Dilution Factor/GPC Cleanup (Y) Percent Moisture		S1 BPD08 SOIL ug/kg 10	S2 BPD09 SOIL ug/kg 10 25	S3 BPD10 SOIL ug/kg 10 15	S4 BPD11 SOIL ug/kg 10 36	S5 BPD12 SOIL ug/kg 10000 12	S6 BPD25 SOIL ug/kg 10 12	DUP OF S5 S7 BPD26 SOIL ug/kg 10000	SW1 BPD27 WATER ug/L 1	SW2 BPD28 WATER ug/L 1
alpha-BHC		·							0.011 J	
beta-BHC		i .				•	٠,	`	0.011 J	R
delta-BHC gamma-BHC (Lindane)		1 .			•			_	0.021 JN	0.021 J
Heptachior							•			
Aldrin		- !			-	•	•	*		
Heptachlor epoxide	•	ŀ								
Endosulfan I		. i							0.073	R
Dieldrin .		i			,	V	` 1			R
4,4'-DDE Endrin		1							0.044 J	0.022 JN
Endosulfan II		!							R	0.022 41
4.4'-DDD	**	!			32		•			
Endosulfan sulfate		-	•						•	•
4,4'DDT		i								
Methoxychlor		i	•		•					0.021 JN 0.065 J
Endrin ketone	•	i								0.065 J
Endrin aldehyde alpha – Chlordane		1 .	•							
gamma — Chlordane	١ .	[•							0.035 J
Toxaphene		,		,					0.011 JN	0.04 J
Aroclor - 1016						٠,			•	
Aroclor-1221		í	-		•		ė.			
Aroclor-1232		i								
Aroclor – 1242		Ţ								
Aroclor – 1248 Aroclor – 1254	سهدد موجدسسس		and the same of th					1. 7.		•
Aroclor - 1280		68000	1,10000	6900	20000			1 1 00 000	2.1 E	1.09E-
		. I	•		•	T	-	1 1		

NOTES:

Blank space — compound analyzed for but not detected

B - compound found in lab blank as well as sample, indicates possible/probable

blank contamination

E - estimated value

J - estimated value, compound present below CRQL but above IDL

R - analysis did not pass EPA QA/QC

N - Presumptive evidence of the presence

of the material

NR - analysis not required

Detection limits elevated if Dilution

Factor >1 and/or percent moisture >0%

SITE NAME: CORNELL DUBILIER ELECTRONICS

PROJECT#: 8003-306 SAMPLING DATE: 6/8/94

EPA CASE NO.; 22276 LAB: ROSS

PESTICIDES	1 .	DUP OF SW3	•							_
Sample ID No.	SW3	SW4	SW5	SED1	SED2	SED3	SED5	RIN1	RIN2	TB1 .
Traffic Report No.	BPD29	BPD30	BPG00	BPD31	BPD32	BPD33	BPG07	BPD34	BPD83	BPF99 WATER
Matix	WATER	WATER	WATER	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	WATER	WATER	
Units -	ug/L	ug/L	ug/L	ug/kg	ug/kg	ug/kg	ug/kg	ug/L	ug/L	ug/L NA
Dilution Factor/GPC Cleanup (Y)	1 1	1	1	10	1	1	10	1		NA
Percent Moisture	 			38	56	30	46			
alpha – BHC	i		0.054 E	:N	-					NR NR
beta-BHC	1			•	*					NR NR
deltaBHC	0.028 J	0.028 J	•	•						NA NA
gamma – BHC (Lindane)	l				•					NR NR
Heptachlor	ļ									NR NR
Aldrin										NR
Heptachlor epoxide	[0.017 Jr	0.02 JN	0.8 E						*	NR
Endosulfan I	ļ		0.26	E						NR
Dieldrin										NR
4,4'-DDE	!		0.40							NR .
Endrin			0.12	•					•	NR
Endosulfan II	!								•	NR
4,4'-DDD							•	•		NR
Endosulfan sulfate	ļ									NR
4,4'-DDT	ļ							•		NR
Methoxychlor	!							•		NR
Endrin ketone	!									NR
Endrin aldehyde	!				*. <i>.</i>					NR
alpha Chlordane	!					•				NR
gamma – Chlordane	!									NR
Toxaphene	!		/					•		NR
Aroclor - 1016	-									NR
Aroclor – 1221 Aroclor – 1232	ł									NR
Aroclor – 1232 Aroclor – 1242	-					•		*		NR
			24							NR
Aroclor 1248	1		20 E	N 550000	3700	4,500	51000			NR
Araclas 1990	!		20 6	.,, 559050	5.50	4230	5.75		•	NR
Aroclor – 1260	1									

NOTES:

Blank space — compound analyzed for but not detected

B - compound found in lab blank as well as sample, indicates possible/probable blank contamination

E - estimated value

J - estimated value, compound present below CRQL but above IDL

R - analysis did not pass EPA QA/QC
N - Presumptive evidence of the presence

of the material

NR - analysis not required

Detection limits elevated if Dilution

Factor >1 and/or percent moisture >0%

PROJECT#: 8003 - 806 SAMPLING DATE: 6/8/94 EPA CASE NO.: 22276 LAB NAME: ITPA

INORGANICS													(OUP OF S5				•	
Sample ID No.		l S1		S2		SS		S4		S5		S6		S7		SW1		SW2	
Traffic Report No.		MBLF01		MBLF81		MBLF82		MBLF83		MBLF25		MBLF26		MBLF27		MBLF28		MBLF29	٠.
Matrix		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		WATER		WATER	•
Units		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		ug/L		ug/L	
Dilution Factor	·	1		1		1		1		1		1 -		1		1		1	
Aluminum		12500		3000		3440		7710		28800		7720		29100		2440		11300	
Antimony		1		3.9	J					25.4	E			16.8	Ε				
Arsenic		16.7		15.2	_	25.7		12.9		6.5		3.2		5.2		8.2	J	15.6	E
Barlum		138		207		535		290		224		44.9	J	255		161	J	344	
Beryllium		0.89			J	0.42	J	0.51	J	0.5	J	0.38	J	0.54	J	0.55		0.91	
Cadmium		i 1		1.3				4.7		33.2	•			3 6.7		3.2	J	14.5	
Calcium		2720		1520		601	J	6960		4700		570	J	6590		50600		55200	
Chromium		25.1		12.5		12		78.6		25.7		11.9		24.5		6.4		25.7	
Cobalt	:	16.6	Ε	3.9	J	7.8	J	15.1	٠J	9.2	J	•	J	10	J	4.8		13.1	
Copper		71.8	Ε	62.8	E	38.5	Ε	82.9	E	3020	E	30.5	E	1310	Æ	22.6	J	89.5	
Iron		28600		15900		23400		36200		28400		14700		26100		4800	رو او موسوس	19600	
Lead		178	-	348	3	198	in ca	1419	1	2200	7.02		2.00				11:33	180	
Magnesium	•	5840		584	J	1230		3220		3190		1730		4050		10000		12600	
Manganese		j 914		63.7		224		523		360		204		462		679		1380	
Mercury		j 2.4		0.98		0.24		2.9		0.47				0.76					
Nickel		57.7	Ε	23	Ε	15.2	E	31.7	E	31.4	E	13.1		31.4	E	20.3		40.8	
Potassium		2070		414	J	878	J	1350	J	1320		537	J	1410		3110	J	3950	J
Selenium	· -	i ·		2.4	Ε	2.5	Ε	1.4	J	. 1	J								
Silver		j 0.48	J	6.8		0.89	J	3.8		26.7		1.1	J	22.9				3.8	
Sodium		j 210	J	108	J	161	J	214	J	156	J	58.6	J	160	J	24800	•	24500	
Thallium		ì			•													5.6	
Vanadium		j 205		98.9		29.2		56.7		30.5		18.1		30.2		10.3	J	32.4	
Zinc		j 176		R		R		317		1380		R		1040		713		994	

NOTES:

Blank space - compound analyzed for but not detected

E - estimated value

J - estimated value, compound present

below CRDL but above IDL

R - analysis did not pass EPA QA/QC

NR - analysis not required

SITE NAME: CORNELL DUBILIER ELECTRONICS

PROJECT#: 8003-306 SAMPLING DATE: 6/8/94 EPA CASE NO.: 22276

LAB NAME: ITPA

INORGANICS Sample ID No. Traffic Report No Matrix Units Dilution Factor		SW3 MBLF30 WATER ug/L		SUP OF SV SW4 MBLF31 WATER ug/L	V3	SW5 MBLF37 WATER ug/L		SED1 MBLF32 SEDIMENT mg/kg 1	;	SED2 MBLF33 SEDIMENT mg/kg 1		8ED3 MBLF34 EDIMENT mg/kg 1		SED5 MBLF38 SEDIMENT mg/kg 1		RIN1 MBLF35 WATER ug/L 1		RIN2 MBLF36 WATER ug/L 1	· · · · ·
Aluminum		401		373		5800		12800		13600	E ·	13300		16800		39.1	J	103	ن ،
Antimony								6.1	J.				-					,	
Arsenic		3.9	J	4.6	J	9.2	J	9.2		13.8	E	10.4		24.2					J
Barium		114	J	117	J	366		225		317	Ε	256		366		0.96			J
Beryllium	\$	0.2		0.16		0.5	J	0.73	J	1.1	J	0.85	J	•	J	0.31	J	0.16	į J
Cadmium	•					8.2		14.4			E	10.3		24.8					
Calcium		46100		47400		38000		3740		6060	E	6380		7670		651	J	996	5 J
Chromium	,	10.00				27.1		28.5		59.1	Ε	38.7	-	56.6					
Cobalt	•	2.6	J	2.2	J	8.8	J	10.9	J	16.1	J	16.1	E	18.4		1.6	J	1.8	3 J
		7.2		7.6		76.8		. 219	Ε	122	E	91.1	E	165	E				
Copper Iron	•	1470		1500		9570		18300			Ε	28600		31400		51.2	J	41.7	/ J
্বি <u>ead</u>	•		72.34	Tribe news a	براند. در از در	153	375	552	1	290	E~	216	أندو	<u>ე. №4</u> 425″					
man of		8840		9050		8700		3190		4250	E	4950		6460		, 32.1	J		2 J
Magnesium Manganese		409	•	416		907		539		847	E	1610		1390		:1	J	1.6	5 J
-		, , i				0.23		0,37		0.41	E	0.73		0.77					
Mercury Nickel		, j 9.3	J	8.9	J	28	J	34.8	Ε	38.3	Ε	38.9	Ε	52.4					
		2500		2580		3170	J	1030	J	1150	J	1450	J	1470					
Potassium		1 2000	•	•	•			1.2	J	1.6	J	1.6	Ε	1.9	Ε				
Selenium		1 1				3.2	J	6.9		4.4	E	2.4	J.	6.1		*			2 J
Silver	•	i I 24400		25100		17900		221	٠J	252	J	253	J	406	J	967	J	1100) J
Sodium	•	24400		20.00		.,,,,,												*	
Thallium		I I 4.8	.1	4	.1	46.5	J	35.5		41.7	Ε	42.6		85.8				•	
Vanadium		4.0 62.1		51.8	J	838		453		430		350		798		142		97.	5
Zinc		02.1		31.0		550		,50			_			1 5					

NOTES:

Blank space - compound analyzed for but not detected

E - estimated value

J- estimated value, compound present

below CRDL but above IDL

R - analysis did not pass EPA QA/QC

NR - analysis not required

MAP KEY

SOIL SAMPLE

Δ

CORNELL DUBILIER ELECTRONICS
SOUTH PLAINFIELD. MIDDLESEX COUNTY. NEW JERSEY
SAMPLE LOCATION MAP
NOT TO SCALE